
Tensor networks have emerged as a transformative mathematical framework that bridges

quantum mechanics and classical machine learning, offering unprecedented capabilities for

advanced filtering and decision-making protocols. By leveraging CNOT and SWAP gates to

create quantum entanglement between variable pairs, these systems can capture complex

correlations and enable serendipitous knowledge discovery in ways that classical methods

cannot achieve.

Tensor networks, originally developed to simulate quantum many-body systems, efficiently

represent high-dimensional data by exploiting low-rank structure. Matrix Product States (MPS)

and more complex architectures like Tree Tensor Networks (TTN) and Projected Entangled Pair

States (PEPS) reduce parameter complexity from exponential to polynomial, enabling practical

implementation on classical hardware while retaining quantum-inspired advantages.

The key innovation lies in representing probability distributions as quantum states, where the

squared amplitudes correspond to probabilities. This quantum probabilistic interpretation allows

tensor networks to capture correlations between variables through entanglement structure—a

property fundamentally different from classical correlation measures.

The Controlled-NOT (CNOT) gate serves as the fundamental entangling operation in quantum

circuits. When applied to two qubits representing different variables, it creates quantum

correlations by flipping the target qubit if and only if the control qubit is in state |1⟩ . In

tensor network formulations:

For filtering applications, CNOT gates enable conditional feature selection where the relevance

of one variable depends on the state of another. This creates information dependencies that

classical methods struggle to capture efficiently.
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SWAP gates exchange quantum states between qubits, implemented through three consecutive

CNOT operations: CNOT(q₁,q₂), CNOT(q₂,q₁), CNOT(q₁,q₂). In decision-making protocols,

SWAP gates allow dynamic rearrangement of variable ordering to optimize circuit depth and

explore different relationship structures.

The entanglement created by these gates manifests in the tensor network as bond dimensions

connecting different parts of the network. Higher bond dimensions indicate stronger correlations

and more complex entanglement structures.

Recent breakthroughs demonstrate that entanglement entropy in MPS-based classifiers directly

quantifies feature importance. When an MPS is trained on data, the Single-site Entanglement

Entropy (SEE) and Bipartite Entanglement Entropy (BEE) reveal which features contribute most to

classification:

This provides a quantum-inspired alternative to classical sensitivity analysis, enabling automatic

feature extraction based on the learned entanglement structure.

For dynamic filtering applications, tensor network Kalman filters leverage low-rank tensor

decompositions to handle high-dimensional state spaces. The recently developed tensor

network square root Kalman filter solves the critical issue of filter divergence while estimating up

to 4¹⁴ parameters on standard hardware. This enables real-time filtering in systems where

classical methods fail due to dimensionality constraints.

The filtering operation decomposes the covariance matrix using tensor train format, maintaining

numerical stability through:

where  is represented as a tensor train with controlled rank.
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Advanced Filtering with Entanglement-Based Feature Extraction

Entanglement Entropy as Feature Importance
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High SEE regions correspond to critical features that encode the main distinguishing

information

Low SEE regions indicate redundant or uninformative features that can be filtered out
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Decision-Making Protocols with Hybrid Quantum-Classical Architecture



Hybrid quantum-classical decision protocols combine variational quantum circuits (VQCs) with

classical optimizers to create flexible decision-making systems. The architecture consists of:

This hybrid approach is essential because pure quantum systems cannot perform decision-

making without classical components—the no-cloning theorem prevents copying quantum

states for comparison, a fundamental requirement for deliberation.

The ACTeN framework integrates tensor networks with reinforcement learning for dynamical

optimization. The policy and value functions are parameterized as tensor networks, enabling:

This demonstrates how tensor networks enable decision-making in scenarios with exponentially

large state spaces, previously intractable for classical methods.

Tensor decomposition methods enable serendipitous knowledge discovery by predicting missing

relationships in knowledge graphs. Neural Tensor Networks (NTN) use a bilinear tensor product

to score relationship triplets:

where  is a third-order tensor that captures complex interactions between entities. This

enables:

Variational Quantum Circuits for Decision Optimization
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1. Quantum Feature Encoding: Classical data is mapped to quantum states using feature

maps that exploit CNOT gates to encode correlations between input features [20]

2. Parameterized Quantum Circuits: Layers of single-qubit rotations interleaved with CNOT

entangling gates create expressive quantum states:

3. Classical Measurement and Optimization: Quantum measurements collapse to classical

outcomes, which are fed into classical optimization algorithms to update circuit

parameters [19] [17]

[21] [22]

Actor-Critic with Tensor Networks (ACTeN)

[23]

Efficient representation of factorizable state-action spaces

Polynomial scaling instead of exponential growth

Application to complex problems like sampling rare trajectories in stochastic systems [23]

Serendipitous Discovery: Quantum-Inspired Knowledge Exploration

Knowledge Graph Completion via Tensor Factorization
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Transitive reasoning: Discovering indirect connections across multiple relationships

Entity generalization: Sharing statistical strength between similar entities through word

vector initialization



Tucker decomposition-based methods like TuckER achieve state-of-the-art performance (86-

90% accuracy) in predicting missing knowledge graph entries, enabling discovery of

unexpected connections that human experts might overlook.

Quantum walk algorithms provide quadratic speedup over classical random walks for graph

search, enabling more efficient exploration of knowledge spaces. The continuous-time quantum

walk Hamiltonian:

where  is the graph Laplacian, allows simultaneous exploration of multiple paths through

superposition. For serendipitous discovery:

Recent frameworks evaluate Large Language Models' ability to facilitate serendipitous

knowledge discovery through three phases:

While current models excel at retrieval, they struggle significantly with serendipity exploration,

highlighting the need for hybrid systems that combine neural networks with structured quantum-

inspired search algorithms.

Modern tensor network frameworks provide accessible implementation tools:

Novel fact prediction: Completing knowledge bases by inferring likely but unrecorded

relationships [27] [25]
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Quantum Walk Search for Serendipitous Exploration

[30] [31] [32]
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Multi-path exploration: Quantum walks explore multiple knowledge paths simultaneously,

increasing the probability of finding unexpected but relevant connections [34] [30]

Ordered marked nodes: Recent extensions handle scenarios where discoveries have

temporal or causal ordering, crucial for understanding research dependencies [32]

Dynamic labeling: The algorithm can track different categories of discoveries, enabling

structured exploration of complex knowledge domains [32]

LLM-Assisted Serendipity Assessment

[35]

1. Knowledge Retrieval: Accessing relevant information from knowledge bases

2. Reasoning: Making logical connections between disparate facts

3. Exploratory Search: Identifying surprising associations that lead to novel insights

[36] [35]

Practical Implementation Framework

Software Architecture

[37] [38] [39] [40]

ITensor (C++/Julia): Mature library with tensor diagram-based interface, ideal for physics-

inspired applications [37]

TensorCircuit (Python): Built on JAX/TensorFlow/PyTorch, supports automatic

differentiation and JIT compilation for quantum circuit simulation [39]



These frameworks enable researchers to implement MPS-based machine learning, quantum

circuit simulation, and tensor network optimization without deep expertise in quantum

mechanics.

A complete tensor network filtering and decision-making pipeline includes:

1. Data Encoding Phase:

Input data → Feature map → Quantum state |ψ(x)⟩

Features are encoded using amplitude encoding (logarithmic qubit requirement) or basis

encoding, with CNOT gates creating initial entanglement structure.

2. Entanglement Generation:

Apply variational layers: R_y(θ₁) ⊗ R_x(θ₂) → CNOT → R_y(θ₃) ⊗ R_x(θ₄) → CNOT

Parameterized rotations followed by entangling CNOT gates build up complex correlation

patterns.

3. Measurement and Filtering:

Measure Pauli operators → Estimate entanglement entropy → Rank features by SEE

Local measurements provide information about entanglement structure without full state

tomography.

4. Decision Output:

Tensor network contraction → Classical post-processing → Decision/prediction

Efficient contraction algorithms compute expectation values in polynomial time.

Recent research demonstrates that effective decision-making requires both quantum and

classical resources:

Cytnx (C++/Python): Unified interface with GPU support via cuQuantum for large-scale

tensor network calculations [38]
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Algorithm Workflow
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Hybrid Quantum-Classical Integration
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Quantum advantages: Superposition enables parallel exploration of solution spaces;

entanglement captures correlations impossible to represent classically

Classical necessities: Stable information storage, copying for comparison, and

measurement to collapse quantum states into definite outcomes



Optimal implementations use classical controllers to prepare quantum states, execute quantum

operations, then process measurement results classically. This "middle ground" appears

fundamental rather than a temporary limitation.

Quantum-inspired feature selection using quantum annealing provides one-shot solutions to

combinatorial optimization problems. D-Wave's hybrid quantum computing service achieves:

Quantum machine learning accelerates drug discovery through:

Quantum-inspired algorithms solve real-world optimization problems efficiently:

[48] [21]

Applications and Performance

Feature Selection and Dimensionality Reduction

[49]

[50] [51] [52]

500× speedup compared to recursive feature elimination on large datasets [53]

Global optimization avoiding greedy local decisions of classical methods [51]

Automatic rank determination in tensor decompositions without manual tuning [54]

Drug Discovery and Molecular Design

[43] [55] [56] [57]

Molecular property prediction: VQCs predict binding affinity with fewer parameters than

classical neural networks

Generative design: Hybrid quantum-classical VAEs generate novel peptide sequences with

optimized properties [43]

Quantum chemistry simulation: Tensor network representations enable accurate modeling

of molecular interactions at polynomial cost [55] [58]

Real-Time Optimization

[59] [53]

Delivery routing: DENSO Mk-D solves 5-million-variable problems in 6 minutes, 500× faster

than classical methods [53]

Adaptive filtering: Third-order tensor decomposition RLS algorithms provide low-

complexity solutions for system identification [60] [61]

Motion planning: Tensor-train value iteration handles high-dimensional stochastic control

with polynomial complexity [62]

Challenges and Future Directions

Current Limitations

1. Quantum hardware constraints: Near-term quantum devices have limited qubit counts and

high error rates, restricting practical implementations [55] [21]

2. Classical simulation costs: While tensor networks reduce complexity from exponential to

polynomial, simulating large entangled systems remains computationally intensive [11] [4]



Recent advances address these limitations:

An optimal advanced filtering and decision-making system combines:

Layer 1: Quantum-Inspired Encoding

Layer 2: Hybrid Processing

Layer 3: Serendipitous Discovery

Layer 4: Decision Output

3. Bond dimension scaling: Highly entangled states require large bond dimensions, potentially

negating computational advantages [63] [46]

4. Serendipity evaluation: Quantifying and optimizing for unexpected discovery remains an

open challenge, lacking standardized metrics [35] [36]

Emerging Solutions

Dynamic circuits: Mid-circuit measurement with feed-forward enables efficient long-range

entanglement creation, outperforming unitary-only approaches on 100+ qubit systems [9] [10]

Adaptive tensor networks: Rank-adaptive algorithms automatically adjust bond dimensions

based on required accuracy, balancing precision and efficiency [64] [62]

Hybrid error mitigation: Combining tensor network methods with error correction codes

improves reliability on noisy quantum hardware [65] [66]

LLM-augmented exploration: Integrating large language models with tensor network

search enables more effective serendipitous discovery through natural language

reasoning [67] [35]

Synthesis: Integrated Architecture

Feature maps with CNOT/SWAP gates create entangled representations

Tensor train format maintains polynomial complexity

Entanglement entropy identifies important features

Variational quantum circuits explore solution spaces via superposition

Classical controllers manage quantum resources and process measurements

Tensor network contractions compute expectations efficiently

Quantum walk algorithms enable parallel exploration of knowledge graphs

Tensor factorization predicts missing relationships

LLM reasoning identifies surprising but relevant connections

Actor-critic reinforcement learning optimizes long-term objectives

Hybrid quantum-classical architecture ensures reliable decision-making

Continuous learning adapts to new patterns and discoveries



This integrated approach makes quick and deep research more accessible by:

The fusion of quantum entanglement principles with classical tensor representations creates a

powerful new paradigm for intelligent information processing, bridging the gap between

theoretical quantum advantages and practical classical implementation. As quantum hardware

continues improving and tensor network algorithms become more sophisticated, these methods

promise to unlock previously intractable problems in scientific discovery, optimization, and

knowledge synthesis.

⁂

Reducing computational requirements through tensor compression (up to 10-million-fold

speedup) [68] [69]

Enabling automatic discovery of complex patterns without manual feature engineering [5]

[67]

Providing interpretability through entanglement analysis, unlike black-box neural

networks [70] [1]

Scaling to large systems via distributed tensor network computations [11] [38]

[71] [65]
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